Bayes Meets Bellman: The Gaussian Process Approach to Temporal Difference Learning
نویسندگان
چکیده
We present a novel Bayesian approach to the problem of value function estimation in continuous state spaces. We define a probabilistic generative model for the value function by imposing a Gaussian prior over value functions and assuming a Gaussian noise model. Due to the Gaussian nature of the random processes involved, the posterior distribution of the value function is also Gaussian and is therefore described entirely by its mean and covariance. We derive exact expressions for the posterior process moments, and utilizing an efficient sequential sparsification method, we describe an on-line algorithm for learning them. We demonstrate the operation of the algorithm on a 2-dimensional continuous spatial navigation domain.
منابع مشابه
Reinforcement learning with kernels and Gaussian processes
Kernel methods have become popular in many sub-fields of machine learning with the exception of reinforcement learning; they facilitate rich representations, and enable machine learning techniques to work in diverse input spaces. We describe a principled approach to the policy evaluation problem of reinforcement learning. We present a temporal difference (TD) learning using kernel functions. Ou...
متن کاملBayesian Policy Gradient and Actor-Critic Algorithms
Policy gradient methods are reinforcement learning algorithms that adapt a parameterized policy by following a performance gradient estimate. Many conventional policy gradient methods use Monte-Carlo techniques to estimate this gradient. The policy is improved by adjusting the parameters in the direction of the gradient estimate. Since Monte-Carlo methods tend to have high variance, a large num...
متن کاملKernel Least-Squares Temporal Difference Learning
Kernel methods have attracted many research interests recently since by utilizing Mercer kernels, non-linear and non-parametric versions of conventional supervised or unsupervised learning algorithms can be implemented and usually better generalization abilities can be obtained. However, kernel methods in reinforcement learning have not been popularly studied in the literature. In this paper, w...
متن کاملBayesian Multi-Task Reinforcement Learning
We consider the problem of multi-task reinforcement learning where the learner is provided with a set of tasks, for which only a small number of samples can be generated for any given policy. As the number of samples may not be enough to learn an accurate evaluation of the policy, it would be necessary to identify classes of tasks with similar structure and to learn them jointly. We consider th...
متن کاملBayesian Multi-Task Reinforcement Learning
We consider the problem of multi-task reinforcement learning where the learner is provided with a set of tasks, for which only a small number of samples can be generated for any given policy. As the number of samples may not be enough to learn an accurate evaluation of the policy, it would be necessary to identify classes of tasks with similar structure and to learn them jointly. We consider th...
متن کامل